Alternativer Text

The Project

 

The EU priority action lines state the need of advancing White Light-Emitting Diodes (WLED) replacing color filters with Inorganic Phosphors (IP: rare-earth elements and Cd quantum dot) for non-toxic and sustainable Organic Phosphors (OP).

ARTIBLED is inspired by highly efficient Bio-WLEDs based on Fluorescent Proteins (FPs), which are stable over weeks and beyond the state-of-the-art OP-WLEDs. However, the stability is limited by the intrinsic photodeactivation of FPs since natural chromophores were not matured by Nature to stand high photon flux excitations. Thus, there is an imperative need to enforce the evolution of photostable FPs directly prepared in bacteria. ARTIBLED proposes a radically new approach to prepare low-cost, highly efficient, and stable Bio-WLEDs by developing new biological synthesis tools to produce novel Artificial Fluorescent Proteins (AFPs) in bacteria, which will be achieved by combining tailored natural as well as de novo protein scaffolds with synthetic LED emitters (PLQY>50% with high photostabilities).

Thus, the novel Bio-WLEDs will also overcome previous limitations connected to photo-deactivation of natural chromophores. ARTIBLED aims to reach TRL4 for both AFP synthesis and Bio-WLEDs to fully meet the lighting needs at the forefront of the EU technology scenario by the end of the project.

 

Funded by

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 863170

 

Contact

Leadership

Prof. Dr. habil. Rubén D. Costa
Tel.: +49 (0) 9421 187-470
E-Mail: ruben.costa@tum.de

ARTIBLED Project Management Office

Dr. Alicia Asin
Tel.: +49 (0) 9421 187-471
E-Mail: alicia.asin@tum.de